Search results for "Quantum System"

showing 10 items of 266 documents

Quantum Computing Experiments with Cold Trapped Ions

2016

PhysicsQuantum technologyQuantum networkOpen quantum systemQubitQuantum dynamicsCavity quantum electrodynamicsQuantum simulatorAtomic physicsTrapped ion quantum computerQuantum Information
researchProduct

Protecting quantum resources via frequency modulation of qubits in leaky cavities

2018

Finding strategies to preserve quantum resources in open systems is nowadays a main requirement for reliable quantum-enhanced technologies. We address this issue by considering structured cavities embedding qubits driven by a control technique known as frequency modulation. We first study a single qubit in a lossy cavity to determine optimal modulation parameters and qubit-cavity coupling regime allowing a gain of four orders of magnitude concerning coherence lifetimes. We relate this behavior to the inhibition of the qubit effective decay rate rather than to stronger memory effects (non-Markovianity) of the system. We then exploit these findings in a system of noninteracting qubits embedde…

Quantum PhysicsMultidisciplinaryQuantum decoherenceComputer sciencelcsh:Rlcsh:MedicineFOS: Physical sciencesQuantum entanglementTopology01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasEntanglement open quantum systems protection of quantum correlations frequency modulationQubit0103 physical scienceslcsh:Qlcsh:Science010306 general physicsQuantum Physics (quant-ph)QuantumFrequency modulationCoherence (physics)Quantum computer
researchProduct

Robust non-Markovianity in ultracold gases

2012

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

PhysicsCondensed Matter::Quantum GasesWork (thermodynamics)Quantum PhysicsCold Atoms Open Quantum System Markovian Master equations/dk/atira/pure/subjectarea/asjc/3100/3107/dk/atira/pure/subjectarea/asjc/3100/3104Thermal fluctuationsFOS: Physical sciencesScattering lengthPhysics and Astronomy(all)Condensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics/dk/atira/pure/subjectarea/asjc/3100Quantum Gases (cond-mat.quant-gas)Quantum mechanicsQubitThermalSensitivity (control systems)Condensed Matter - Quantum Gases/dk/atira/pure/subjectarea/asjc/2600/2610Quantum Physics (quant-ph)Mathematical PhysicsCurse of dimensionality
researchProduct

Strong quantum scarring by local impurities

2016

We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of…

PhysicsQuantum PhysicsSemiclassics and chaos in quantum systemsMultidisciplinaryta114Wave packetFOS: Physical sciencesquantum scars01 natural sciences114 Physical sciencesArticle010305 fluids & plasmasControllabilityQuantum transportImpurityQuantum mechanics0103 physical sciencesPeriodic orbitsQuantum Physics (quant-ph)010306 general physicsQuantumEigenvalues and eigenvectorsQuantum well
researchProduct

Quantum synchronization as a local signature of super- and subradiance

2017

We study the relationship between the collective phenomena of super- and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of longstanding coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occu…

PhysicsQuantum PhysicsDephasingFOS: Physical sciencesquantum syncronizationopen quantum systemsDissipation01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmas[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanicsReciprocity (electromagnetism)Qubit0103 physical sciencesDissipative system010306 general physicsGround stateQuantum Physics (quant-ph)superradianceQuantumComputingMilieux_MISCELLANEOUSCoherence (physics)Physical Review A
researchProduct

Entanglement replication in driven-dissipative many body systems

2012

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

Quantum decoherenceFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementquantum networksSquashed entanglement01 natural sciences010305 fluids & plasmasOPERATIONSQUANTUM COMPUTATION0103 physical sciencesCAVITY ARRAYS010306 general physicsTELEPORTATIONQuantum computerPhysicsQuantum PhysicsNANOCAVITIESCANNOTentanglement quantum networks open quantum systems.open quantum systemsQuantum PhysicsCondensed Matter - Other Condensed MatterArbitrarily largeLIGHTClassical mechanicsTRAPPED IONSPHOTONDissipative systemW stateentanglementQuantum Physics (quant-ph)MATTERQuantum teleportationOther Condensed Matter (cond-mat.other)
researchProduct

Polarization angle dependence of the breathing modes in confined one-dimensional dipolar bosons

2021

Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to investigate interactions and dimensionality effects. We consider a fully polarized quasi-one dimensional dipolar quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with an effective quasi-one dimensional Hamiltonian in the single-mode approximation, and derive the equation of state using a variational approximation based on the Lieb-Liniger gas Bethe Ansatz wavefunction or perturbation theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach, and find them in good agreement with re…

[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]FOS: Physical sciences02 engineering and technology01 natural sciencescollective modesBethe ansatzSupersolidsymbols.namesakedipolar gas supersoliddipolar gas0103 physical sciencesQuantum systemtrapped atoms010306 general physicsWave functionUltracold atoms - Dipolar atoms - Luttinger liquidsBosonPhysicsCondensed Matter::Quantum Gasesdipolar interactionsBrewster's angle021001 nanoscience & nanotechnologyPolarization (waves)3. Good healthsupersolidQuantum Gases (cond-mat.quant-gas)Quantum electrodynamicssymbols0210 nano-technologyHamiltonian (quantum mechanics)Condensed Matter - Quantum Gases
researchProduct

Degenerate Landau–Zener model in the presence of quantum noise

2019

The degenerate Landau–Zener–Majorana–Stückelberg model consists of two degenerate energy levels whose energies vary with time and in the presence of an interaction which couples the states of the two levels. In the adiabatic limit, it allows for the populations transfer from states of one level to the states of the other level. The presence of an interaction with the environment influences the efficiency of the process. Nevertheless, identification of possible decoherence-free subspaces permits to engineer coupling schemes for which the effects of quantum noise can be made negligible.

PhysicsQuantum PhysicsDecoherence-free subspacesPhysics and Astronomy (miscellaneous)Quantum noiseDegenerate energy levelsFOS: Physical sciencesopen quantum systemsdecoherence-free subspace01 natural sciences010305 fluids & plasmasLandau-Zener processeQuantum mechanics0103 physical sciencesStandard linear solid modelQuantum Physics (quant-ph)010306 general physicsEnergy (signal processing)International Journal of Quantum Information
researchProduct

Quantum Computing with Trapped Charged Particles

2009

The concept of quantum computing has no clear cut origin. It emerged from combinations of information theory and quantum mechanical concepts. A decisive step was taken by Feynman [414, 415] who considered the possibility of universal simulation, a quantum system which could simulate the physical behavior of any other. Feynman gave arguments which suggested that quantum evolution could be used to compute certain problems more efficiently than any classical computer. His device may be considered as not sufficiently specified to be called a computer. The next important step was taken in 1985 by Deutsch [310]. His proposal is generally considered to represent the first blueprint for a quantum c…

Quantum gateTheoretical computer scienceControlled NOT gateComputer scienceCavity quantum electrodynamicsQuantum systemCoherent statesQuantumTrapped ion quantum computerQuantum computer
researchProduct

Density-potential mappings in quantum dynamics

2012

In a recent letter [Europhys. Lett. 95, 13001 (2011)] the question of whether the density of a time-dependent quantum system determines its external potential was reformulated as a fixed point problem. This idea was used to generalize the existence and uniqueness theorems underlying time-dependent density functional theory. In this work we extend this proof to allow for more general norms and provide a numerical implementation of the fixed-point iteration scheme. We focus on the one-dimensional case as it allows for a more in-depth analysis using singular Sturm-Liouville theory and at the same time provides an easy visualization of the numerical applications in space and time. We give an ex…

PhysicsQuantum PhysicsCondensed Matter - Materials ScienceSpacetimeta114Quantum dynamicsOperator (physics)Continuous spectrumMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMathematical Physics (math-ph)01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmas0103 physical sciencesConvergence (routing)Quantum systemApplied mathematicsUniquenessBoundary value problem010306 general physicsQuantum Physics (quant-ph)Mathematical Physics
researchProduct